Economics 113 UCSD

Lecture Notes, Lecture 16

7.1 Existence of Equilibrium

Р

$$= \left\{ p \mid p \in \mathbb{R}^{N}, \ p_{k} \ge 0, \ k = 1..., N, \ \sum_{k=1}^{N} p_{k} = 1 \right\}$$
$$\widetilde{Z}(p) = \sum_{i \in H} \widetilde{D}^{i}(p) - \sum_{j \in F} \widetilde{S}^{j}(p) - r$$
$$= \sum_{i \in H} x^{i} - \sum_{j \in F} y^{j} - r \text{, where } x^{i} \text{ is household i's consumption plan, } y^{j} \text{ is }$$

firm j's production plan and r is the resource endowment of the economy. Z(p) is the economy's excess demand function. Recall that all of the expressions in Z(p) are N-dimensional vectors.

Definition: $p^0 \in P$ is said to be an equilibrium price vector if $\widetilde{Z}(p^0) \leq 0$ (the inequality holds co-ordinatewise) with $p^{\circ}_{k} = 0$ for k such that $\widetilde{Z}_{k}(p^0) < 0$. That is, p° is an equilibrium price vector if demand equals supply except for free goods, $\sum_{i \in H} \widetilde{D}^{i}(p^0) \leq \sum_{j \in F} \widetilde{S}^{j}(p^0) - r$.

Weak Walras' Law (Theorem 6.2): For all $p \in P$, $p \cdot \widetilde{Z}(p) \le 0$. For p such that $p \cdot \widetilde{Z}(p) < 0$, there is k = 1, 2, ..., N, so that $\widetilde{Z}_k(p) > 0$, assuming C.I - C.V, C.VII, C.VIII.

Continuity: $\widetilde{Z}(p)$ is a continuous function, assuming P.II, P.III, P.V, P.VI and C.I-C.V, C.VII-C.VIII (Theorem 4.1, Theorem 5.2, Theorem 6.1).

Theorem 7.1: Assume P.II, P.III, P.V, P.VI, and C.I-C.V, CVII-C.VIII. There is $p^* \in P$ so that p^* is an equilibrium.

Proof: $T: P \rightarrow P$. For each k= 1,2,3, ..., N.

$$T_k(p) \equiv \frac{p_k + \max\left[0, \widetilde{Z}_k(p)\right]}{1 + \sum_{n=1}^N \max\left[0, \widetilde{Z}_n(p)\right]} = \frac{p_k + \max\left[0, \widetilde{Z}_k(p)\right]}{\sum_{n=1}^N \left\{p_n + \max\left[0, \widetilde{Z}_n(p)\right]\right\}}.$$

By the Brouwer fixed point theorem there is $p^* \in P$ so that $T(p^*) = p^*$. But then for all k = 1, ..., N,

$$T_{k}(p_{k}^{*}) = p_{k}^{*} = \frac{p_{k}^{*} + max[0, \widetilde{Z}_{k}(p^{*})]}{1 + \sum_{n=1}^{N} max[0, \widetilde{Z}_{n}(p^{*})]}$$

Thus, either $p_k^* = 0$ or

$$p_k^* = \frac{p_k^* + \max[0, \tilde{Z}_k(p^*)]}{1 + \sum_{n=1}^N \max[0, \tilde{Z}_n(p^*)]} > 0 \quad .$$

<u>**Case 1:**</u> $p_k^* = 0 = \max[0, \widetilde{Z}_k(p^*)]$. Hence $\widetilde{Z}_k(p^*) \le 0$.

Economics 113 UCSD Spring 2008 Prof. R. Starr, Mr. T. Kravitz

$$\underline{\text{Case 2:}} p_k^* = \frac{p_k^* + \max\left[0, \widetilde{Z}_k(p^*)\right]}{1 + \sum_{n=1}^N \max\left[0, \widetilde{Z}_n(p^*)\right]} > 0$$

To avoid repeated tedious notation, let $0 < \alpha = \frac{1}{1 + \sum_{n=1}^{N} \max[0, \widetilde{Z}_n(p^*)]} \le 1$.

We have

$$p_k^* = \alpha p_k^* + \alpha \max[0, \tilde{Z}_k(p^*)]$$

 $(1-\alpha)p_k^* = \alpha \max[0, \widetilde{Z}_k(p^*)]$

Multiplying through by $\tilde{Z}_k(p^*)$,

(*)
$$(1-\alpha)p_k^*\widetilde{Z}_k(p^*) = \alpha(\max[0,\widetilde{Z}_k(p^*)])\widetilde{Z}_k(p^*)$$

Restating the Weak Walras' Law,

$$0 \ge p^* \cdot \widetilde{Z}(p^*) = \sum_{k \in Case 1} p_k^* \widetilde{Z}_k(p^*) + \sum_{k \in Case 2} p_k^* \widetilde{Z}_k(p^*) = 0 + \sum_{k \in Case 2} p_k^* \widetilde{Z}_k(p^*) = \sum_{k \in Case 2} p_k^* \widetilde{Z}_k(p^*)$$

or
$$0 \ge \sum_{k \in Case 2} p_k^* \widetilde{Z}_k(p^*)$$

 $0 \ge \sum_{k \in Case 2} p_k^* Z_k(p^*)$

Multiplying through by $(1-\alpha)$, and substituting (*) we have

$$0 \ge (1-\alpha) \sum_{k \in Case 2} p_k^* \widetilde{Z}_k(p^*) = \alpha \sum_{k \in Case 2} (\max[0, \widetilde{Z}_k(p^*)]) \widetilde{Z}_k(p^*) .$$

But this means that $Z_k(p^*) \le 0$, for all k in case 2.

But then, there is no k, either in case 1 or 2, so that $\tilde{Z}_k(p^*) > 0$. But the Weak Walras' Law says that if $p^* \cdot \tilde{Z}(p^*) < 0$, it follows that there is k so that $\tilde{Z}_k(p^*) > 0$. Hence we must have $p^* \cdot \tilde{Z}(p^*) = 0$. Thus for k so that $\tilde{Z}_k(p^*) < 0$, it follows that $p_k^* = 0$. This completes the proof. O.E.D.

Theorem 7.1 is a proof of the consistency of the competitive model of chapters 4-7. It is possible to find prices, $p^* \in P$ so that competitive markets clear. When economists talk about competitive market prices finding their own level, they are not necessarily speaking vacuously. Under the hypotheses above, there is a competitive equilibrium price system.

Economics 113 UCSD

Lemma 7.1: Assume P.II, P.III, P.V, P.VI, and C.I-C.V, CVII-C.VIII. Let p^* be an equilibrium. Then $|\tilde{D}^i(p^*)| < c$ where c is the bound on the Euclidean length of demand, $\tilde{D}^i(p)$. Further, in equilibrium, Walras' Law holds as an equality, $p^* \cdot \tilde{Z}(p^*) = 0$.

Proof: Since $\widetilde{Z}(p^*) \le 0$ (co-ordinatewise), we know that $\sum_{i \in H} \widetilde{D}^i(p^*) \le \sum_{j \in F} \widetilde{S}^j(p^*) + \sum_{i \in H} r^i$,

co-ordinatewise. But that implies that the aggregate consumption $\sum_{i \in H} \widetilde{D}^i(p^*)$ is attainable, so

for each household i, $|\tilde{D}^i(p^*)| < c$ where c is the bound on demand, $\tilde{D}^i(p)$.

We have for all p, $p \cdot \tilde{Z}(p) \le 0$. In equilibrium, at p*, we have $\tilde{Z}(p^*) \le 0$ with $p^*_k = 0$ for k so that $\tilde{Z}_k(p^*) < 0$. Therefore $p^* \cdot \tilde{Z}(p^*) = 0$. QED